Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cell Mol Gastroenterol Hepatol ; 17(3): 383-398, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38061549

RESUMO

BACKGROUND & AIMS: Although chronic diarrhea and constipation are common, the treatment is symptomatic because their pathophysiology is poorly understood. Accumulating evidence suggests that the microbiota modulates gut function, but the underlying mechanisms are unknown. We therefore investigated the pathways by which microbiota modulates gastrointestinal motility in different sections of the alimentary tract. METHODS: Gastric emptying, intestinal transit, muscle contractility, acetylcholine release, gene expression, and vasoactive intestinal polypeptide (VIP) immunoreactivity were assessed in wild-type and Myd88-/-Trif-/- mice in germ-free, gnotobiotic, and specific pathogen-free conditions. Effects of transient colonization and antimicrobials as well as immune cell blockade were investigated. VIP levels were assessed in human full-thickness biopsies by Western blot. RESULTS: Germ-free mice had similar gastric emptying but slower intestinal transit compared with specific pathogen-free mice or mice monocolonized with Lactobacillus rhamnosus or Escherichia coli, the latter having stronger effects. Although muscle contractility was unaffected, its neural control was modulated by microbiota by up-regulating jejunal VIP, which co-localized with and controlled cholinergic nerve function. This process was responsive to changes in the microbial composition and load and mediated through toll-like receptor signaling, with enteric glia cells playing a key role. Jejunal VIP was lower in patients with chronic intestinal pseudo-obstruction compared with control subjects. CONCLUSIONS: Microbial control of gastrointestinal motility is both region- and bacteria-specific; it reacts to environmental changes and is mediated by innate immunity-neural system interactions. By regulating cholinergic nerves, small intestinal VIP plays a key role in this process, thus providing a new therapeutic target for patients with motility disorders.


Assuntos
Motilidade Gastrointestinal , Peptídeo Intestinal Vasoativo , Humanos , Camundongos , Animais , Peptídeo Intestinal Vasoativo/metabolismo , Motilidade Gastrointestinal/fisiologia , Neuroglia/metabolismo , Colinérgicos
2.
Nat Immunol ; 24(7): 1098-1109, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37337103

RESUMO

Macrophages are involved in immune defense, organogenesis and tissue homeostasis. Macrophages contribute to the different phases of mammary gland remodeling during development, pregnancy and involution postlactation. Less is known about the dynamics of mammary gland macrophages in the lactation stage. Here, we describe a macrophage population present during lactation in mice. By multiparameter flow cytometry and single-cell RNA sequencing, we identified a lactation-induced CD11c+CX3CR1+Dectin-1+ macrophage population (liMac) that was distinct from the two resident F4/80hi and F4/80lo macrophage subsets present pregestationally. LiMacs were predominantly monocyte-derived and expanded by proliferation in situ concomitant with nursing. LiMacs developed independently of IL-34, but required CSF-1 signaling and were partly microbiota-dependent. Locally, they resided adjacent to the basal cells of the alveoli and extravasated into the milk. We found several macrophage subsets in human milk that resembled liMacs. Collectively, these findings reveal the emergence of unique macrophages in the mammary gland and milk during lactation.


Assuntos
Lactação , Leite Humano , Gravidez , Feminino , Camundongos , Humanos , Animais , Macrófagos , Glândulas Mamárias Animais
3.
Immunity ; 56(5): 1115-1131.e9, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36917985

RESUMO

Intestinal IL-17-producing T helper (Th17) cells are dependent on adherent microbes in the gut for their development. However, how microbial adherence to intestinal epithelial cells (IECs) promotes Th17 cell differentiation remains enigmatic. Here, we found that Th17 cell-inducing gut bacteria generated an unfolded protein response (UPR) in IECs. Furthermore, subtilase cytotoxin expression or genetic removal of X-box binding protein 1 (Xbp1) in IECs caused a UPR and increased Th17 cells, even in antibiotic-treated or germ-free conditions. Mechanistically, UPR activation in IECs enhanced their production of both reactive oxygen species (ROS) and purine metabolites. Treating mice with N-acetyl-cysteine or allopurinol to reduce ROS production and xanthine, respectively, decreased Th17 cells that were associated with an elevated UPR. Th17-related genes also correlated with ER stress and the UPR in humans with inflammatory bowel disease. Overall, we identify a mechanism of intestinal Th17 cell differentiation that emerges from an IEC-associated UPR.


Assuntos
Estresse do Retículo Endoplasmático , Mucosa Intestinal , Células Th17 , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Células Th17/citologia , Células Th17/metabolismo , Diferenciação Celular , Humanos , Animais , Camundongos , Camundongos Transgênicos , Antibacterianos/farmacologia
4.
Cell Host Microbe ; 30(12): 1773-1787.e6, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36318918

RESUMO

The human distal small intestine (ileum) has a distinct microbiota, but human studies investigating its composition and function have been limited by the inaccessibility of the ileum without purging and/or deep intubation. We investigated inherent instability, temporal dynamics, and the contribution of fed and fasted states using stoma samples from cured colorectal cancer patients as a non-invasive access route to the otherwise inaccessible small and large intestines. Sequential sampling of the ileum before and after stoma formation indicated that ileostoma microbiotas represented that of the intact small intestine. Ileal and colonic stoma microbiotas were confirmed as distinct, and two types of instability in ileal host-microbial relationships were observed: inter-digestive purging followed by the rapid postprandial blooming of bacterial biomass and sub-strain appearance and disappearance within individual taxa after feeding. In contrast to the relative stability of colonic microbiota, the human small intestinal microbiota biomass and its sub-strain composition can be highly dynamic.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Adulto , Íleo/microbiologia , Intestino Delgado , Colo/microbiologia
5.
Cell Rep ; 40(3): 111112, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858559

RESUMO

Secretory immunoglobulin A (SIgA) interaction with commensal bacteria conditions microbiota composition and function. However, mechanisms regulating reciprocal control of microbiota and SIgA are not defined. Bacteria-derived adenosine triphosphate (ATP) limits T follicular helper (Tfh) cells in the Peyer's patches (PPs) via P2X7 receptor (P2X7R) and thereby SIgA generation. Here we show that hydrolysis of extracellular ATP (eATP) by apyrase results in amplification of the SIgA repertoire. The enhanced breadth of SIgA in mice colonized with apyrase-releasing Escherichia coli influences topographical distribution of bacteria and expression of genes involved in metabolic versus immune functions in the intestinal epithelium. SIgA-mediated conditioning of bacteria and enterocyte function is reflected by differences in nutrient absorption in mice colonized with apyrase-expressing bacteria. Apyrase-induced SIgA improves intestinal homeostasis and attenuates barrier impairment and susceptibility to infection by enteric pathogens in antibiotic-induced dysbiosis. Therefore, amplification of SIgA by apyrase can be leveraged to restore intestinal fitness in dysbiotic conditions.


Assuntos
Apirase , Imunoglobulina A Secretora , Trifosfato de Adenosina/metabolismo , Animais , Bactérias/metabolismo , Homeostase , Imunoglobulina A Secretora/metabolismo , Mucosa Intestinal/metabolismo , Intestinos , Camundongos , Nódulos Linfáticos Agregados
6.
Nat Commun ; 12(1): 7316, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916513

RESUMO

Abdominal surgeries are lifesaving procedures but can be complicated by the formation of peritoneal adhesions, intra-abdominal scars that cause intestinal obstruction, pain, infertility, and significant health costs. Despite this burden, the mechanisms underlying adhesion formation remain unclear and no cure exists. Here, we show that contamination of gut microbes increases post-surgical adhesion formation. Using genetic lineage tracing we show that adhesion myofibroblasts arise from the mesothelium. This transformation is driven by epidermal growth factor receptor (EGFR) signaling. The EGFR ligands amphiregulin and heparin-binding epidermal growth factor, are sufficient to induce these changes. Correspondingly, EGFR inhibition leads to a significant reduction of adhesion formation in mice. Adhesions isolated from human patients are enriched in EGFR positive cells of mesothelial origin and human mesothelium shows an increase of mesothelial EGFR expression during bacterial peritonitis. In conclusion, bacterial contamination drives adhesion formation through mesothelial EGFR signaling. This mechanism may represent a therapeutic target for the prevention of adhesions after intra-abdominal surgery.


Assuntos
Epitélio/patologia , Receptores ErbB/metabolismo , Aderências Teciduais/metabolismo , Animais , Modelos Animais de Doenças , Receptores ErbB/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos , Peritônio , Peritonite/patologia , Aderências Teciduais/genética , Aderências Teciduais/patologia
7.
EMBO J ; 40(23): e108605, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34622466

RESUMO

The immune cells of the central nervous system (CNS) comprise parenchymal microglia and at the CNS border regions meningeal, perivascular, and choroid plexus macrophages (collectively called CNS-associated macrophages, CAMs). While previous work has shown that microglial properties depend on environmental signals from the commensal microbiota, the effects of microbiota on CAMs are unknown. By combining several microbiota manipulation approaches, genetic mouse models, and single-cell RNA-sequencing, we have characterized CNS myeloid cell composition and function. Under steady-state conditions, the transcriptional profiles and numbers of choroid plexus macrophages were found to be tightly regulated by complex microbiota. In contrast, perivascular and meningeal macrophages were affected to a lesser extent. An acute perturbation through viral infection evoked an attenuated immune response of all CAMs in germ-free mice. We further assessed CAMs in a more chronic pathological state in 5xFAD mice, a model for Alzheimer's disease, and found enhanced amyloid beta uptake exclusively by perivascular macrophages in germ-free 5xFAD mice. Our results aid the understanding of distinct microbiota-CNS macrophage interactions during homeostasis and disease, which could potentially be targeted therapeutically.


Assuntos
Doença de Alzheimer/imunologia , Bactérias/crescimento & desenvolvimento , Sistema Nervoso Central/imunologia , Homeostase , Macrófagos/imunologia , Células Mieloides/imunologia , Doença de Alzheimer/genética , Doença de Alzheimer/microbiologia , Doença de Alzheimer/patologia , Animais , Bactérias/classificação , Bactérias/metabolismo , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/microbiologia , Sistema Nervoso Central/patologia , Feminino , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , Células Mieloides/metabolismo , Células Mieloides/microbiologia , Células Mieloides/patologia , Transcriptoma
8.
Clin Transl Gastroenterol ; 12(2): e00298, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33735154

RESUMO

INTRODUCTION: The development of biomarkers to guide management of anti-tumor necrosis factor (TNF) agents in patients with inflammatory bowel disease (IBD) is an unmet need. We developed an in vitro blood assay to predict patient long-term outcome with the anti-TNFα agent infliximab (IFX). METHODS: Patients with IBD were classified according to the shedding of an L-selectin (CD62L) from the surface of their granulocytes in whole blood. CD62L shedding was quantified by flow cytometry before and after drug administration. A clinical data collection from June 2012 to August 2017 with blinded IFX management was aimed at validating the long-term predictive value of this test. RESULTS: Among 33 patients with IBD (17 Crohn's disease and 5 ulcerative colitis), 22 were predicted functional responders (PFR) and 11 were predicted as nonresponders (NR) according to the in vitro test. Five years after study initiation, 72% of PFR were still treated with IFX (vs 27% in the NR group; P < 0.05), with a median time spent under IFX of 45 vs 12 months (P = 0.019), respectively. Thirty-five medicosurgical events occurred with a median time to first event of 3 vs 30 months (P = 0.023), respectively. Our assay was the best independent predictor of staying long term on IFX (P = 0.056). DISCUSSION: An assay-based in vitro test for functional blockade of TNFα (CD62L shedding) provides an excellent long-term (at 3-5 years) independent predictor of durable use of IFX in patients with IBD. Testing patients could personalize decision making to significantly reduce costs and risk of adverse events and complications.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Doença de Crohn/tratamento farmacológico , Fármacos Gastrointestinais/uso terapêutico , Imunoensaio/métodos , Infliximab/uso terapêutico , Selectina L/sangue , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adulto , Anticorpos/sangue , Biomarcadores/sangue , Colite Ulcerativa/sangue , Feminino , Citometria de Fluxo , Seguimentos , Fármacos Gastrointestinais/imunologia , Humanos , Infliximab/imunologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Análise de Sobrevida
9.
Radiat Oncol ; 15(1): 281, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33317602

RESUMO

BACKGROUND: Current studies about percutaneous endoscopic gastrostomy (PEG) tube placement report equivalent patient outcomes with prophylactic PEG tubes (pPEGs) versus common nutritional support. Unreported was if omitting a pPEG is associated with an increased risk of complications leading to a treatment-related unplanned hospitalization (TRUH). METHODS: TRUHs were retrospectively analyzed in patients with advanced head and neck squamous cell carcinoma (n = 310) undergoing (chemo)radiotherapy with (pPEG) or without PEG (nPEG). RESULTS: In 88 patients (28%), TRUH was reported. One of the leading causes of TRUH in nPEG patients was inadequate oral intake (n = 16, 13%), and in pPEG patients, complications after PEG tube insertion (n = 12, 10%). Risk factors for TRUH were poor performance status, tobacco use, and surgical procedures. CONCLUSIONS: Omitting pPEG tube placement without increasing the risk of an unplanned hospitalization due to dysphagia, dehydration or malnutrition, is an option in patients being carefully monitored. Patients aged > 60 years with hypopharyngeal carcinoma, tobacco consumption, and poor performance status appear at risk of PEG tube-related complications leading to an unplanned hospitalization.


Assuntos
Quimiorradioterapia , Gastrostomia , Neoplasias de Cabeça e Pescoço/terapia , Hospitalização , Apoio Nutricional , Adulto , Idoso , Idoso de 80 Anos ou mais , Quimiorradioterapia/efeitos adversos , Endoscopia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
10.
Gastroenterology ; 159(1): 183-199, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32179094

RESUMO

BACKGROUND & AIMS: Intestinal epithelial homeostasis depends on a tightly regulated balance between intestinal epithelial cell (IEC) death and proliferation. While the disruption of several IEC death regulating factors result in intestinal inflammation, the loss of the anti-apoptotic BCL2 family members BCL2 and BCL2L1 has no effect on intestinal homeostasis in mice. We investigated the functions of the antiapoptotic protein MCL1, another member of the BCL2 family, in intestinal homeostasis in mice. METHODS: We generated mice with IEC-specific disruption of Mcl1 (Mcl1ΔIEC mice) or tamoxifen-inducible IEC-specific disruption of Mcl1 (i-Mcl1ΔIEC mice); these mice and mice with full-length Mcl1 (controls) were raised under normal or germ-free conditions. Mice were analyzed by endoscopy and for intestinal epithelial barrier permeability. Intestinal tissues were analyzed by histology, in situ hybridization, proliferation assays, and immunoblots. Levels of calprotectin, a marker of intestinal inflammation, were measured in intestinal tissues and feces. RESULTS: Mcl1ΔIEC mice spontaneously developed apoptotic enterocolopathy, characterized by increased IEC apoptosis, hyperproliferative crypts, epithelial barrier dysfunction, and chronic inflammation. Loss of MCL1 retained intestinal crypts in a hyperproliferated state and prevented the differentiation of intestinal stem cells. Proliferation of intestinal stem cells in MCL1-deficient mice required WNT signaling and was associated with DNA damage accumulation. By 1 year of age, Mcl1ΔIEC mice developed intestinal tumors with morphologic and genetic features of human adenomas and carcinomas. Germ-free housing of Mcl1ΔIEC mice reduced markers of microbiota-induced intestinal inflammation but not tumor development. CONCLUSION: The antiapoptotic protein MCL1, a member of the BCL2 family, is required for maintenance of intestinal homeostasis and prevention of carcinogenesis in mice. Loss of MCL1 results in development of intestinal carcinomas, even under germ-free conditions, and therefore does not involve microbe-induced chronic inflammation. Mcl1ΔIEC mice might be used to study apoptotic enterocolopathy and inflammatory bowel diseases.


Assuntos
Carcinoma/patologia , Mucosa Intestinal/patologia , Neoplasias Intestinais/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Animais , Apoptose/genética , Apoptose/imunologia , Carcinogênese/genética , Carcinogênese/imunologia , Carcinogênese/patologia , Carcinoma/diagnóstico , Carcinoma/genética , Modelos Animais de Doenças , Endoscopia , Células Epiteliais/patologia , Humanos , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/diagnóstico por imagem , Neoplasias Intestinais/diagnóstico , Neoplasias Intestinais/genética , Camundongos , Camundongos Transgênicos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética
11.
United European Gastroenterol J ; 7(6): 767-781, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31316781

RESUMO

Background: Many inflammatory bowel disease (IBD) patients follow a restrictive diet due to perceived positive effects on their symptoms. We assessed the prevalence of vegetarian (VD) and gluten-free diets (GFDs) in IBD patients, the reasons for following such a diet, and whether nutrition has an impact on disease activity and microbiota composition. Methods: We included 1254 patients from the Swiss Inflammatory Bowel Disease Cohort Study with prospective acquisition of clinical data and psychosocial, disease-related and lifestyle factors between 2006 and 2015. Dietary habits were assessed through a self-report questionnaire. In 92 patients, we analysed intestinal mucosa-associated microbial composition using high-throughput sequencing. Results: Overall, 4.1% (n = 52) of the patients reported following a VD and 4.7% (n = 54) a GFD. No differences regarding disease activity, fistula, hospitalization or surgery rates were observed. Patients on a VD or GFD had significantly higher levels of post-traumatic stress symptoms. Furthermore, GFD patients had significantly higher anxiety and depression symptom levels. The gut microbiota composition in IBD patients following a VD or GFD was significantly different compared to that of omnivores. Conclusions: Although we did not identify a relevant impact of a specific diet on the course of the disease, there was a significant association with lower psychological well-being in VD and GFD patients.


Assuntos
Dieta Livre de Glúten , Dieta Vegetariana , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/dietoterapia , Doenças Inflamatórias Intestinais/psicologia , Adulto , Idoso , Feminino , Humanos , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/epidemiologia , Entrevista Psicológica , Masculino , Pessoa de Meia-Idade , Vigilância em Saúde Pública , Inquéritos e Questionários , Resultado do Tratamento
12.
Science ; 363(6430): 993-998, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30819965

RESUMO

Immunoglobulin A (IgA) is the major secretory immunoglobulin isotype found at mucosal surfaces, where it regulates microbial commensalism and excludes luminal factors from contacting intestinal epithelial cells (IECs). IgA is induced by both T cell-dependent and -independent (TI) pathways. However, little is known about TI regulation. We report that IEC endoplasmic reticulum (ER) stress induces a polyreactive IgA response, which is protective against enteric inflammation. IEC ER stress causes TI and microbiota-independent expansion and activation of peritoneal B1b cells, which culminates in increased lamina propria and luminal IgA. Increased numbers of IgA-producing plasma cells were observed in healthy humans with defective autophagy, who are known to exhibit IEC ER stress. Upon ER stress, IECs communicate signals to the peritoneum that induce a barrier-protective TI IgA response.


Assuntos
Estresse do Retículo Endoplasmático , Células Epiteliais/imunologia , Imunidade nas Mucosas , Imunoglobulina A/imunologia , Mucosa Intestinal/imunologia , Animais , Autofagia , Proteínas Relacionadas à Autofagia/genética , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmócitos/imunologia , Técnicas de Cultura de Tecidos , Proteína 1 de Ligação a X-Box/genética
13.
Nat Med ; 25(2): 323-336, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30664783

RESUMO

Inflammatory bowel diseases (IBD) can be broadly divided into Crohn's disease (CD) and ulcerative colitis (UC) from their clinical phenotypes. Over 150 host susceptibility genes have been described, although most overlap between CD, UC and their subtypes, and they do not adequately account for the overall incidence or the highly variable severity of disease. Replicating key findings between two long-term IBD cohorts, we have defined distinct networks of taxa associations within intestinal biopsies of CD and UC patients. Disturbances in an association network containing taxa of the Lachnospiraceae and Ruminococcaceae families, typically producing short chain fatty acids, characterize frequently relapsing disease and poor responses to treatment with anti-TNF-α therapeutic antibodies. Alterations of taxa within this network also characterize risk of later disease recurrence of patients in remission after the active inflamed segment of CD has been surgically removed.


Assuntos
Doença de Crohn/microbiologia , Microbioma Gastrointestinal , Corticosteroides/uso terapêutico , Estudos de Casos e Controles , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/microbiologia , Colite Ulcerativa/cirurgia , Doença de Crohn/diagnóstico , Doença de Crohn/tratamento farmacológico , Doença de Crohn/cirurgia , Humanos , Recidiva , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
14.
Immunity ; 49(2): 342-352.e5, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30097293

RESUMO

Interleukin-22 (IL-22)-producing group 3 innate lymphoid cells (ILC3) maintains gut homeostasis but can also promote inflammatory bowel disease (IBD). The regulation of ILC3-dependent colitis remains to be elucidated. Here we show that Foxp3+ regulatory T cells (Treg cells) prevented ILC3-mediated colitis in an IL-10-independent manner. Treg cells inhibited IL-23 and IL-1ß production from intestinal-resident CX3CR1+ macrophages but not CD103+ dendritic cells. Moreover, Treg cells restrained ILC3 production of IL-22 through suppression of CX3CR1+ macrophage production of IL-23 and IL-1ß. This suppression was contact dependent and was mediated by latent activation gene-3 (LAG-3)-an immune checkpoint receptor-expressed on Treg cells. Engagement of LAG-3 on MHC class II drove profound immunosuppression of CX3CR1+ tissue-resident macrophages. Our study reveals that the health of the intestinal mucosa is maintained by an axis driven by Treg cells communication with resident macrophages that withhold inflammatory stimuli required for ILC3 function.


Assuntos
Antígenos CD/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Colite/imunologia , Colite/patologia , Subunidade p19 da Interleucina-23/imunologia , Mucosa Intestinal/patologia , Macrófagos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Células Cultivadas , Células Dendríticas/imunologia , Fatores de Transcrição Forkhead/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Interleucina-10/imunologia , Interleucina-1beta/imunologia , Interleucinas/imunologia , Mucosa Intestinal/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Reguladores/transplante , Proteína do Gene 3 de Ativação de Linfócitos , Interleucina 22
15.
PLoS One ; 13(7): e0199664, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29965986

RESUMO

BACKGROUND: Genetic risk factors, intestinal microbiota and a dysregulated immune system contribute to the pathogenesis of inflammatory bowel disease (IBD). We have previously demonstrated that dysfunction of protein tyrosine phosphatase non-receptor type 2 (PTPN2) and PTPN22 contributes to alterations of intestinal microbiota and the onset of chronic intestinal inflammation in vivo. Here, we investigated the influence of PTPN2 and PTPN22 gene variants on intestinal microbiota composition in IBD patients. METHODS: Bacterial DNA from mucosa-associated samples of 75 CD and 57 UC patients were sequenced using 16S rRNA sequencing approach. Microbial analysis, including alpha diversity, beta diversity and taxonomical analysis by comparing to PTPN2 (rs1893217) and PTPN22 (rs2476601) genotypes was performed in QIIME, the phyloseq R package and MaAsLin pipeline. RESULTS: In PTPN2 variant UC patients, we detected an increase in relative abundance of unassigned genera from Clostridiales and Lachnospiraceae families and reduction of Roseburia when compared to PTPN2 wild-type (WT) patients. Ruminoccocus was increased in PTPN22 variant UC patients. In CD patients with severe disease course, Faecalibacterium, Bilophila, Coprococcus, unclassified Erysipelotrichaeceae, unassigned genera from Clostridiales and Ruminococcaceae families were reduced and Bacteroides were increased in PTPN2 WT carriers, while Faecalibacterium, Bilophila, Coprococcus, and Erysipelotrichaeceae were reduced in PTPN22 WT patients when compared to patients with mild disease. In UC patients with severe disease, relative abundance of Lachnobacterium was reduced in PTPN2 and PTPN22 WT patients, Dorea was increased in samples from PTPN22 WT carriers and an unassigned genus from Ruminococcaceae gen. was increased in patients with PTPN2 variant genotype. CONCLUSIONS: We identified that IBD-associated genetic risk variants, disease severity and the interaction of these factors are related to significant alterations in intestinal microbiota composition of IBD patients.


Assuntos
Suscetibilidade a Doenças , Microbioma Gastrointestinal , Variação Genética , Doenças Inflamatórias Intestinais/etiologia , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Adulto , Alelos , Biópsia , Estudos de Coortes , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Doenças Inflamatórias Intestinais/diagnóstico , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Polimorfismo de Nucleotídeo Único , RNA Ribossômico 16S/genética , Medição de Risco , Fatores de Risco , Índice de Gravidade de Doença , Suíça , Adulto Jovem
16.
Elife ; 62017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28975893

RESUMO

Aberrant alternative pre-mRNA splicing (AS) events have been associated with several disorders. However, it is unclear whether deregulated AS directly contributes to disease. Here, we reveal a critical role of the AS regulator epithelial splicing regulator protein 1 (ESRP1) for intestinal homeostasis and pathogenesis. In mice, reduced ESRP1 function leads to impaired intestinal barrier integrity, increased susceptibility to colitis and altered colorectal cancer (CRC) development. Mechanistically, these defects are produced in part by modified expression of ESRP1-specific Gpr137 isoforms differently activating the Wnt pathway. In humans, ESRP1 is downregulated in inflamed biopsies from inflammatory bowel disease patients. ESRP1 loss is an adverse prognostic factor in CRC. Furthermore, generation of ESRP1-dependent GPR137 isoforms is altered in CRC and expression of a specific GPR137 isoform predicts CRC patient survival. These findings indicate a central role of ESRP1-regulated AS for intestinal barrier integrity. Alterations in ESRP1 function or expression contribute to intestinal pathology.


Assuntos
Processamento Alternativo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/fisiopatologia , Doenças Inflamatórias Intestinais/patologia , Doenças Inflamatórias Intestinais/fisiopatologia , Proteínas de Ligação a RNA/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Camundongos
17.
J Immunol ; 199(7): 2570-2584, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28864472

RESUMO

IL-19, a member of the IL-10 cytokine family that signals through the IL-20 receptor type I (IL-20Rα:IL-20Rß), is a cytokine whose function is not completely known. In this article, we show that the expression of IL19 in biopsies of patients with active ulcerative colitis was increased compared with patients with quiescent ulcerative colitis and that colitis was attenuated in IL-19-deficient mice. The disruption of the epithelial barrier with dextran sodium sulfate leads to increased IL-19 expression. Attenuated colitis in IL-19-deficient animals was associated with reduced numbers of IL-6-producing macrophages in the inflamed colonic lamina propria. Microbial-driven expression of IL-19 by intestinal macrophages may contribute to the pathogenesis of inflammatory bowel disease.


Assuntos
Colite Ulcerativa/imunologia , Doenças Inflamatórias Intestinais/imunologia , Interleucina-10/genética , Interleucinas/genética , Receptores Toll-Like/imunologia , Animais , Biópsia , Colite/imunologia , Colite Ulcerativa/patologia , Sulfato de Dextrana/administração & dosagem , Modelos Animais de Doenças , Humanos , Doenças Inflamatórias Intestinais/patologia , Interleucina-10/deficiência , Interleucina-10/imunologia , Interleucina-10/metabolismo , Interleucina-6/biossíntese , Interleucina-6/imunologia , Interleucinas/imunologia , Interleucinas/metabolismo , Intestinos/citologia , Intestinos/imunologia , Intestinos/patologia , Ligantes , Macrófagos , Camundongos , Mucosa/imunologia , Transdução de Sinais , Receptores Toll-Like/metabolismo
18.
Hepatology ; 66(1): 235-251, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28370258

RESUMO

Hepatocellular carcinoma (HCC) represents the fifth-most common form of cancer worldwide and carries a high mortality rate attributed to lack of effective treatment. Males are 8 times more likely to develop HCC than females, an effect largely driven by sex hormones, albeit through still poorly understood mechanisms. We previously identified TRIM28 (tripartite protein 28), a scaffold protein capable of recruiting a number of chromatin modifiers, as a crucial mediator of sexual dimorphism in the liver. Trim28hep-/- mice display sex-specific transcriptional deregulation of a wide range of bile and steroid metabolism genes and development of liver adenomas in males. We now demonstrate that obesity and aging precipitate alterations of TRIM28-dependent transcriptional dynamics, leading to a metabolic infection state responsible for highly penetrant male-restricted hepatic carcinogenesis. Molecular analyses implicate aberrant androgen receptor stimulation, biliary acid disturbances, and altered responses to gut microbiota in the pathogenesis of Trim28hep-/- -associated HCC. Correspondingly, androgen deprivation markedly attenuates the frequency and severity of tumors, and raising animals under axenic conditions completely abrogates their abnormal phenotype, even upon high-fat diet challenge. CONCLUSION: This work underpins how discrete polyphenic traits in epigenetically metastable conditions can contribute to a cancer-prone state and more broadly provides new evidence linking hormonal imbalances, metabolic disturbances, gut microbiota, and cancer. (Hepatology 2017;66:235-251).


Assuntos
Carcinogênese/patologia , Carcinoma Hepatocelular/genética , Instabilidade Genômica , Neoplasias Hepáticas/genética , Proteínas Repressoras/genética , Envelhecimento/genética , Animais , Carcinoma Hepatocelular/patologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Epigenômica/métodos , Feminino , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estresse Oxidativo , Fenótipo , Distribuição Aleatória , Medição de Risco , Fatores de Risco , Proteína 28 com Motivo Tripartido
19.
Cell Host Microbe ; 20(5): 561-571, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27832587

RESUMO

The liver receives blood from the intestine, from the spleen, and directly from the heart and holds a vital position in vertebrate physiology. It plays a role in intermediary metabolism, bile secretion, maintaining blood sterility, serum homeostasis, xenobiotic detoxification, and immunological activity. This article provides our perspective on the liver as a nexus in establishing and maintaining host microbial mutualism. We discuss the role of the liver not only in sanitizing the blood stream from penetrant live microbes, but also in metabolizing xenobiotics that are synthesized or modified by intestinal microbes, and how microbiota modify the signaling potential of bile acids. The combination of bile acids as hormones and the metabolic control from pervasive effects of other absorbed microbial molecules powerfully shape hepatic metabolism. In addition, intestinal microbial metabolites can be sensed by liver-resident immune cells, which may disturb liver homeostasis, leading to fibrosis and liver cancer.


Assuntos
Microbioma Gastrointestinal , Fígado/metabolismo , Xenobióticos/metabolismo , Animais , Biotransformação , Humanos
20.
J Clin Invest ; 125(7): 2579-91, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26011644

RESUMO

Myeloproliferative neoplasms (MPNs) are characterized by the clonal expansion of one or more myeloid cell lineage. In most cases, proliferation of the malignant clone is ascribed to defined genetic alterations. MPNs are also associated with aberrant expression and activity of multiple cytokines; however, the mechanisms by which these cytokines contribute to disease pathogenesis are poorly understood. Here, we reveal a non-redundant role for steady-state IL-33 in supporting dysregulated myelopoiesis in a murine model of MPN. Genetic ablation of the IL-33 signaling pathway was sufficient and necessary to restore normal hematopoiesis and abrogate MPN-like disease in animals lacking the inositol phosphatase SHIP. Stromal cell-derived IL-33 stimulated the secretion of cytokines and growth factors by myeloid and non-hematopoietic cells of the BM, resulting in myeloproliferation in SHIP-deficient animals. Additionally, in the transgenic JAK2V617F model, the onset of MPN was delayed in animals lacking IL-33 in radio-resistant cells. In human BM, we detected increased numbers of IL-33-expressing cells, specifically in biopsies from MPN patients. Exogenous IL-33 promoted cytokine production and colony formation by primary CD34+ MPN stem/progenitor cells from patients. Moreover, IL-33 improved the survival of JAK2V617F-positive cell lines. Together, these data indicate a central role for IL-33 signaling in the pathogenesis of MPNs.


Assuntos
Interleucinas/metabolismo , Transtornos Mieloproliferativos/etiologia , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Humanos , Inositol Polifosfato 5-Fosfatases , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33 , Interleucinas/deficiência , Interleucinas/genética , Peptídeos e Proteínas de Sinalização Intracelular , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Mielopoese/genética , Mielopoese/fisiologia , Transtornos Mieloproliferativos/imunologia , Transtornos Mieloproliferativos/metabolismo , Proteínas Associadas à Matriz Nuclear , Monoéster Fosfórico Hidrolases/deficiência , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Receptores de Interleucina/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA